|
|
Line 1: |
Line 1: |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- TableTools --
| |
− | -- --
| |
− | -- This module includes a number of functions for dealing with Lua tables. --
| |
− | -- It is a meta-module, meant to be called from other Lua modules, and should --
| |
− | -- not be called directly from #invoke. --
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
| | | |
− | local libraryUtil = require('libraryUtil')
| |
− |
| |
− | local p = {}
| |
− |
| |
− | -- Define often-used variables and functions.
| |
− | local floor = math.floor
| |
− | local infinity = math.huge
| |
− | local checkType = libraryUtil.checkType
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- isPositiveInteger
| |
− | --
| |
− | -- This function returns true if the given value is a positive integer, and false
| |
− | -- if not. Although it doesn't operate on tables, it is included here as it is
| |
− | -- useful for determining whether a given table key is in the array part or the
| |
− | -- hash part of a table.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.isPositiveInteger(v)
| |
− | if type(v) == 'number' and v >= 1 and floor(v) == v and v < infinity then
| |
− | return true
| |
− | else
| |
− | return false
| |
− | end
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- isNan
| |
− | --
| |
− | -- This function returns true if the given number is a NaN value, and false
| |
− | -- if not. Although it doesn't operate on tables, it is included here as it is
| |
− | -- useful for determining whether a value can be a valid table key. Lua will
| |
− | -- generate an error if a NaN is used as a table key.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.isNan(v)
| |
− | if type(v) == 'number' and tostring(v) == '-nan' then
| |
− | return true
| |
− | else
| |
− | return false
| |
− | end
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- shallowClone
| |
− | --
| |
− | -- This returns a clone of a table. The value returned is a new table, but all
| |
− | -- subtables and functions are shared. Metamethods are respected, but the returned
| |
− | -- table will have no metatable of its own.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.shallowClone(t)
| |
− | local ret = {}
| |
− | for k, v in pairs(t) do
| |
− | ret[k] = v
| |
− | end
| |
− | return ret
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- removeDuplicates
| |
− | --
| |
− | -- This removes duplicate values from an array. Non-positive-integer keys are
| |
− | -- ignored. The earliest value is kept, and all subsequent duplicate values are
| |
− | -- removed, but otherwise the array order is unchanged.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.removeDuplicates(t)
| |
− | checkType('removeDuplicates', 1, t, 'table')
| |
− | local isNan = p.isNan
| |
− | local ret, exists = {}, {}
| |
− | for i, v in ipairs(t) do
| |
− | if isNan(v) then
| |
− | -- NaNs can't be table keys, and they are also unique, so we don't need to check existence.
| |
− | ret[#ret + 1] = v
| |
− | else
| |
− | if not exists[v] then
| |
− | ret[#ret + 1] = v
| |
− | exists[v] = true
| |
− | end
| |
− | end
| |
− | end
| |
− | return ret
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- numKeys
| |
− | --
| |
− | -- This takes a table and returns an array containing the numbers of any numerical
| |
− | -- keys that have non-nil values, sorted in numerical order.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.numKeys(t)
| |
− | checkType('numKeys', 1, t, 'table')
| |
− | local isPositiveInteger = p.isPositiveInteger
| |
− | local nums = {}
| |
− | for k, v in pairs(t) do
| |
− | if isPositiveInteger(k) then
| |
− | nums[#nums + 1] = k
| |
− | end
| |
− | end
| |
− | table.sort(nums)
| |
− | return nums
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- affixNums
| |
− | --
| |
− | -- This takes a table and returns an array containing the numbers of keys with the
| |
− | -- specified prefix and suffix. For example, for the table
| |
− | -- {a1 = 'foo', a3 = 'bar', a6 = 'baz'} and the prefix "a", affixNums will
| |
− | -- return {1, 3, 6}.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.affixNums(t, prefix, suffix)
| |
− | checkType('affixNums', 1, t, 'table')
| |
− | checkType('affixNums', 2, prefix, 'string', true)
| |
− | checkType('affixNums', 3, suffix, 'string', true)
| |
− |
| |
− | local function cleanPattern(s)
| |
− | -- Cleans a pattern so that the magic characters ()%.[]*+-?^$ are interpreted literally.
| |
− | s = s:gsub('([%(%)%%%.%[%]%*%+%-%?%^%$])', '%%%1')
| |
− | return s
| |
− | end
| |
− |
| |
− | prefix = prefix or ''
| |
− | suffix = suffix or ''
| |
− | prefix = cleanPattern(prefix)
| |
− | suffix = cleanPattern(suffix)
| |
− | local pattern = '^' .. prefix .. '([1-9]%d*)' .. suffix .. '$'
| |
− |
| |
− | local nums = {}
| |
− | for k, v in pairs(t) do
| |
− | if type(k) == 'string' then
| |
− | local num = mw.ustring.match(k, pattern)
| |
− | if num then
| |
− | nums[#nums + 1] = tonumber(num)
| |
− | end
| |
− | end
| |
− | end
| |
− | table.sort(nums)
| |
− | return nums
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- numData
| |
− | --
| |
− | -- Given a table with keys like ("foo1", "bar1", "foo2", "baz2"), returns a table
| |
− | -- of subtables in the format
| |
− | -- { [1] = {foo = 'text', bar = 'text'}, [2] = {foo = 'text', baz = 'text'} }
| |
− | -- Keys that don't end with an integer are stored in a subtable named "other".
| |
− | -- The compress option compresses the table so that it can be iterated over with
| |
− | -- ipairs.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.numData(t, compress)
| |
− | checkType('numData', 1, t, 'table')
| |
− | checkType('numData', 2, compress, 'boolean', true)
| |
− | local ret = {}
| |
− | for k, v in pairs(t) do
| |
− | local prefix, num = mw.ustring.match(tostring(k), '^([^0-9]*)([1-9][0-9]*)$')
| |
− | if num then
| |
− | num = tonumber(num)
| |
− | local subtable = ret[num] or {}
| |
− | if prefix == '' then
| |
− | -- Positional parameters match the blank string; put them at the start of the subtable instead.
| |
− | prefix = 1
| |
− | end
| |
− | subtable[prefix] = v
| |
− | ret[num] = subtable
| |
− | else
| |
− | local subtable = ret.other or {}
| |
− | subtable[k] = v
| |
− | ret.other = subtable
| |
− | end
| |
− | end
| |
− | if compress then
| |
− | local other = ret.other
| |
− | ret = p.compressSparseArray(ret)
| |
− | ret.other = other
| |
− | end
| |
− | return ret
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- compressSparseArray
| |
− | --
| |
− | -- This takes an array with one or more nil values, and removes the nil values
| |
− | -- while preserving the order, so that the array can be safely traversed with
| |
− | -- ipairs.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.compressSparseArray(t)
| |
− | checkType('compressSparseArray', 1, t, 'table')
| |
− | local ret = {}
| |
− | local nums = p.numKeys(t)
| |
− | for _, num in ipairs(nums) do
| |
− | ret[#ret + 1] = t[num]
| |
− | end
| |
− | return ret
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- sparseIpairs
| |
− | --
| |
− | -- This is an iterator for sparse arrays. It can be used like ipairs, but can
| |
− | -- handle nil values.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.sparseIpairs(t)
| |
− | checkType('sparseIpairs', 1, t, 'table')
| |
− | local nums = p.numKeys(t)
| |
− | local i = 0
| |
− | local lim = #nums
| |
− | return function ()
| |
− | i = i + 1
| |
− | if i <= lim then
| |
− | local key = nums[i]
| |
− | return key, t[key]
| |
− | else
| |
− | return nil, nil
| |
− | end
| |
− | end
| |
− | end
| |
− |
| |
− | --[[
| |
− | ------------------------------------------------------------------------------------
| |
− | -- size
| |
− | --
| |
− | -- This returns the size of a key/value pair table. It will also work on arrays,
| |
− | -- but for arrays it is more efficient to use the # operator.
| |
− | ------------------------------------------------------------------------------------
| |
− | --]]
| |
− | function p.size(t)
| |
− | checkType('size', 1, t, 'table')
| |
− | local i = 0
| |
− | for k in pairs(t) do
| |
− | i = i + 1
| |
− | end
| |
− | return i
| |
− | end
| |
− |
| |
− | return p
| |